Audytor.ru

Теплоснабжение "Аудитор"
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Привести примеры использования теплового действия тока в быту

Привести примеры использования теплового действия тока в быту

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Читайте так же:
Механический выключатель для теплого пола

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

закон джоуля-ленца

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I 2 *R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U 2 /R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax) 2 и в начале пробега (mu 2 )/2 , то есть

формула приращение энергии электрона

Здесь u скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Формула полной энергии

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент, E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

Формула мощности P выделяемой в объеме

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I 2 R;
  • P = U 2 /R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Формула количества теплоты

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Читайте так же:
Как прозвонить провод теплого пола

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Какие существуют виды источников электрического тока?

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Читайте так же:
Как можно использовать тепловое действие тока 1

Какие существуют виды источников электрического тока?

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

  1. Солевые;
  2. Щелочные;
  3. Литиевые.

Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

Какие существуют виды источников электрического тока?

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Какие существуют виды источников электрического тока?

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

Какие существуют виды источников электрического тока?

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Читайте так же:
Как закрепить провод теплого пола

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Определение закона и формула

Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него электрического тока, пропорционально произведению значения плотности электрического поля на значение напряженности.

Математически закон Джоуля — Ленца выражается следующим образом:

где ω — количество тепла, выделяемого в ед. объема;

E и j – напряжённость и плотность, соответственно, электрического полей;

Таблица явлений Закон Джоуля Ленца

σ — проводимость среды.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

Читайте так же:
Чему равно тепло сила тока

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

Действия электрического тока: тепловое, химическое, магнитное, световое и механическое

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает — ток есть. Если типичное сопутствующее току явление наблюдается — ток в цепи есть, и т. д.
Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.

Сварочная дуга

В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, — это тоже тепловое действие тока.

ТРЕБОВАНИЯ ОХРАНЫ ТРУДА В АВАРИЙНЫХ СИТУАЦИЯХ

4.1. В любых аварийных ситуациях или при возникновении опасности для жизни и здоровья работников следует остановить работу, сообщить непосредственному руководителю, принять меры к устранению таких ситуаций и опасностей. 4.2. При обнаружении пожара или явных признаков горения (задымление, запах гари, повышение температуры и т.п.): — нажать ближайшую кнопку ручного пожарного извещателя; — сообщить в пожарную службу по телефону 101; — приступить к тушению возгорания имеющимися в наличии первичными средствами пожаротушения, соблюдая при этом все необходимые меры предосторожности. 4.3. Если во время работы обнаружится неисправность оборудования или работник почувствует хотя бы слабое действие тока, необходимо немедленно прекратить работу и сообщить об этом непосредственному руководителю. 4.4. Если с работником произошёл несчастный случай или внезапное резкое ухудшение самочувствия, следует прекратить работу, оказать первую помощь, вызвать бригаду скорой помощи по телефону 103 и немедленно сообщить о случившемся непосредственному руководителю; сохранить обстановку места происшествия, если это не представляет опасности для окружающих.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector