Audytor.ru

Теплоснабжение "Аудитор"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические счётчики

Электрические счётчики

Приборы учета электроэнергии появились одновременно с началом коммерческой эксплуатации электросетей. В самых древних сетях использоваться постоянный ток (США, Т. Эдисон), а счетчик работал на осаждении металла из гальванической ванны.

В период контроля образец взвешивали и по весу рассчитывали количество потребленной энергии. Это было очень неудобно. Когда началась эра переменного тока (Н. Тесла и Дж. Вестингауз), стали использовать индукционный счетчик, широко применяемый и по сей день, в эпоху умной электроники и компьютеров.

В этой статье будет рассмотрено, какие бывают электросчетчики, их устройство, достоинства, недостатки, и области применения.

Борьба за «честный подсчет»: как защитить электросчетчик от взлома

Специалисты с сожалением отмечают, что в процессе своего развития и совершенствования приборы учета потребляемых энергоресурсов постоянно отстают от методов и способов хищения, многообразие которых обусловлено ростом тарифов, несовершенством законодательства и нормативной базы, а также изъянами в конструкции счетчиков. Незащищенность таких приборов учета представляет серьезную проблему для энергоснабжающих компаний, которые практически одиноки в этой борьбе.

Способы хищения энергоресурсов разнообразны и зависят как от типа энергоресурса, так и от группы потребителей. Однако большинство экспертов сходятся в том, что практически все способы хищения энергоресурсов базируются на несовершенстве приборов учета. Существует огромное количество сайтов, где вам предложат различные методы обмана счетчика, однако люди должны понимать, что, идя на это, они нарушают закон.

Магниты и антимагниты

Как повлиять на работу счетчика с помощью внешних воздействий? Самый простой способ замедлить счетчик электроэнергии – это поднести к нему магнит. Но, конечно, не все так просто. В старых бытовых индукционных счетчиках для замера энергии применяется электромагнитная система, соответственно, внешнее магнитное поле может на нее повлиять. Так, при поднесении нормального магнита к задней стенке наблюдаются некоторое торможение диска, сильная вибрация, иногда заклинивание от нее.

Как же с этим бороться? Один из вариантов – при приемке прибора учета в эксплуатацию установить на нем специальную антимагнитную наклейку. Данная наклейка представляет собой пластиковую двухслойную основу, в которую встроена специальная капсула, заполненная суспензией, реагирующей на воздействие магнитного поля свыше 100 мТл. При попытке сорвать пломбу верхний слой отслаивается и проявляется надпись «вскрыто», устранить которую путем возврата пломбы на место невозможно.

Есть и более хитрые способы. Так, на Северном Кавказе активно используют пломбы– индикаторы магнитного поля «антимагнит». Причем оснащение приборов учета такими пломбами позволяет не только выявить, но и доказать факт хищения энергоресурсов с применением магнита. Что представляет собой пломба – индикатор магнитного поля? Это наклейка на основе пломбировочного скотча, снабженная капсулой с магниточувствительной суспензией. Изначально индикатор имеет однородную массу в виде черной точки диаметром 1,5‑2 мм. В случае даже кратковременного воздействия магнитным полем индикатор меняет свою структуру, рассыпаясь по всей капсуле, тем самым указывая на факт воздействия магнитным полем на прибор учета. Частицы суспензии реагируют на магнитное поле свыше 100 мТл. Каждая пломба-индикатор имеет индивидуальный порядковый номер. Ее невозможно временно удалить с корпуса, поскольку при снятии пломбы разрушается структура индикатора и появляется надпись о том, что устройство взломано.

Впрочем, современные электронные счетчики не реагируют на магнитное поле любой силы. Как же обманывают их?

Читайте так же:
С 1 сентября установить счетчики

Можно вспомнить, что некоторые умельцы занимаются изменением передаточного числа счетного механизма. Счетчик начинает недосчитывать часть потребленной электроэнергии в зависимости от количества убранных зубцов. Диск счетчика крутится как раньше, светодиоды моргают с той же частотой, а именно по этим данным проверяется счетчик.

«Жучок» в счетчике

Бывает, что для обмана счетчика используют метод, как в фильмах про шпионов: в счетчик ставят «жучок», который, правда, не подслушивает разговоры, а помогает владельцу воровать электроэнергию. Жучок устанавливается в укромном месте механизма электросчетчика. Алгоритм действия жучка прост: получить сигнал извне и полностью или частично остановить подсчет расходуемой электроэнергии. В случае геркона это поднесение небольшого магнита к корпусу электросчетчика. Жучок либо впаивается в разрыв катушки напряжения (для старых индукционных счетчиков), либо в цепь питания двигателя счетного механизма (для электронных счетчиков с механическим счетным механизмом, либо, например, в измерительные цепи датчиков тока для электронных счетчиков). Как отмечают специалисты по воровству электроэнергии, располагать устройство нужно на фоне металлических компонентов во фронтальной и боковой проекции, чтобы не видно было на рентгене. Далее счетчик несут на поверку, и если все сделано правильно, то на выходе получается опломбированный счетчик, но с «жучком».

Другим способом может быть шунтирование токовых цепей. Чтобы счетчик учитывал меньше электроэнергии, можно часть этой энергии пустить мимо его датчиков тока, то есть зашунтировать их. Старые советские однофазные и трехфазные счетчики имеют в своей конструкции токовые катушки, по которым идет весь ток. Поэтому шунтируются они толстым медным проводом. В современных электронных счетчиках установлены датчики тока. Они замеряют ток и передают уже слабый сигнал далее, в электронную схему. Этот сигнал и ослабляют жулики. Причем в этом варианте лучше установить сопротивление в разрыв слаботочной цепи датчика.

Если более внимательно ознакомиться с методами взлома счетчиков, то можно выяснить, что современный цифровой электросчетчик легко выводится из строя электрошокером. Достигается это сжиганием в результате воздействия высокого напряжения одной из трех обмоток напряжения. Важно, чтобы катушка сгорела быстро, без выделения большего количества дыма. Кроме того, можно влиять на процессор электронных электросчетчиков мощным радиоизлучением. Впрочем, этот метод для совсем рисковых воров электричества, ведь для получения нужного эффекта необходимо очень мощное поле, что вредно для бытовых радиоэлектронных приборов и здоровья людей. Также нельзя забывать, что такой источник радиоизлучения неизбежно будет создавать помехи радиосвязи.

Методы борьбы

Как отмечают специалисты, проблема хищений электроэнергии будет оставаться актуальной до тех пор, пока будет возрастать стоимость электроэнергии, снижаться платежеспособность потребителей и отсутствовать эффективная правовая база для привлечения расхитителей электроэнергии к ответственности. Для решения проблемы одновременно с техническими должны использоваться организационные мероприятия. С целью неотвратимого воздействия на расхитителей электроэнергии должны применяться административно-уголовные меры. Кроме того, всегда эффективны рейды по выявлению хищений, телефоны доверия, а также меры поощрения инспекторов за выявление фактов воровства электроэнергии, проведение ревизий и маркирование средств учета специальными знаками. Также борьбе с хищениями электроэнергии в частном секторе может способствовать вынесение приборов учета за границы балансовой принадлежности потребителей, а также использование самонесущего изолированного провода (СИП) для исключения несанкционированного доступа к электросетям.

Наиболее эффективной же организационной мерой по борьбе с хищениями электроэнергии большинство специалистов считают массовое внедрение автоматизированных систем учета электроэнергии (АСКУЭ), в которые будут объединены интеллектуальные приборы учета с возможностью хранения и передачи данных на основе технологии Smart Metering («умный учет»). Такие системы позволяют решать целый комплекс важных задач, включая удаленное снятие показаний с приборов учета, автоматическую фиксацию данных в определенный промежуток времени, выявление очагов потерь, а также мгновенное дистанционное ограничение в нагрузке или полное отключение от электроэнергии неплательщиков.

Читайте так же:
Счетчик kw trio 2420 для чего

«Умные» счетчики позволяют хранить данные о потреблении в энергонезависимой памяти и транслировать их по каналам связи на удаленный сервер, расположенный в центре обработки данных. Такие приборы учета имеют защиту от физического вмешательства и сигнализируют о любых попытках несанкционированного вторжения в свою деятельность. За счет обширного функционала интеллектуальные системы служат эффективным инструментом для повышения платежной культуры потребителей и должны внедряться параллельно с комплексом технических мер для предупреждения и устранения фактов хищения электроэнергии.

Энергоэффективность технологии удаленного сбора показаний определяется несколькими базовыми составляющими, а именно наличием достаточно большого радиуса действия, максимально дешевой диспетчеризацией, простотой архитектуры сети с возможностью легкого подключения новых устройств и, конечно же, надежностью и помехозащищенностью. Счетчики со встроенным радиомодулем будут точно и свое­временно передавать данные с каждой точки учета электроэнергии. А при наличии счетчиков старого образца возможна установка внешнего модема, который будет передавать показания напрямую на базовую станцию – без проводов и концентраторов. Используя удобный интерфейс, управляющая компания сможет контролировать показания по каждой точке учета и в целом по присоединению.

Вопрос, как доказать хищение электроэнергии, отпадет сам собой из‑за наличия базы данных, в которой отражены объемы потребленной электроэнергии как в целом по присоединению, так и отдельно по каждому потребителю. При необходимости можно воспользоваться данными с внешних датчиков, установленных на ответвлениях к потребителям.

Краеугольным камнем в деле борьбы с расхитителями государственных и частных энергоресурсов является то, что при применении АСКУЭ совершенно прозрачно можно определить, какой объем электроэнергии был получен из сети для электроснабжения многоквартирного дома или садоводческого товарищества и по каким направлениями или собственникам он был распределен.

Помимо этого, автоматизация сбора показаний исключает риск недоучета электроэнергии или попытки сокрытия потребленной мощности путем недопуска к счетчику представителей управляющей компании.

Так что именно создание «умных сетей» позволит победить тех, кто пытается обмануть счетчики. Правда, возникнет другая проблема: как бороться с хакерами, которые обязательно захотят взломать «умную сеть»? Но это тема для другого разговора.

Технология поиска дефектов кабеля с использованием рефлектометра: плавающие дефекты, пупиновские катушки

«Плавающие» дефекты — это периодически проявляющиеся повреждения, причинами которых могут быть некачественные соединения жил или пониженное сопротивление изоляции. О дефектах такого рода свидетельствуют жалобы клиентов на повышенный шум линии или кратковременное пропадание сигнала «ответ станции». Такие дефекты могут проявляться при подаче вызывного напряжения, при механическом воздействии на кабель в месте повреждения (например, в случае вибрации от проходящего рядом трамвая или какого-либо работающего оборудования) и т. п.

Обычно, когда техник сталкивается с таким типом повреждения, ему приходится терпеливо ждать, пока оно не проявит себя, в надежде, что эффект будет наблюдаться достаточно долго, чтобы определить его местоположение. Нет никакой гарантии, что повреждение обнаружит себя именно во время дежурства техника. Применение рефлектометров позволяет автоматизировать этот процесс и максимально увеличить производительность.

Читайте так же:
Сколько дней до события счетчик

В некоторых рефлектометрах реализована специальная функция обнаружения «плавающих» дефектов (Intermittent Fault), с помощью которой подключенный к линии прибор как бы накапливает в течение определенного времени все рефлектограммы и отображает их наложенными друг на друга. Там, где рефлектограмма отличается, и находится «плавающий» дефект.

ОБНАРУЖЕНИЕ «ПЛАВАЮЩИХ» ДЕФЕКТОВ

В качестве примера рассмотрим следующую ситуацию. Определенная пара кабеля работает нормально большую часть дня, однако совершенно неожиданно абонент может столкнуться с проблемами на линии — например, происходит кратковременное пропадание сигнала «ответ станции».

При проверке получаем две рефлектограммы одной и той же пары (при снятии рефлектограмм использовались разные коэффициенты усиления). В первом случае при коэффициенте усиления в 12 дБ на рефлектограмме исправной пары наблюдается всплеск положительной полярности на расстоянии 2060 м, что соответствует концу данного кабеля в распределительном шкафу. Во втором — при увеличении коэффициента усиления на 14 дБ на рефлектограмме появляется дополнительный всплеск, характер которого указывает на наличие муфты в кабеле на расстоянии 1000 м. При дальнейшем повышении уровня усиления по вертикали на рефлектограмме не будет выявлено ни малейшего повреждения вдоль всей длины тестируемого кабеля.

Нам понадобится уже упоминавшаяся ранее функция обнаружение «плавающих» дефектов. Непрерывно контролируя состояние пары, рефлектометр выводит на дисплей любые отклонения от характеристического импеданса кабеля, что позволяет точно определить место непостоянного повреждения.

На дисплее рефлектометра будут отображаться текущие рефлектограммы, полученные при тестировании. Периодическая проверка позволяет установить, не проявились ли признаки неисправности. Конечный результат, когда удалось зафиксировать непостоянное повреждение, должен выглядеть приблизительно так, как показано на рисунке.

Если сравнить его с предыдущим, различия будут очевидны. На том месте, где раньше ничего не было, появляется обрыв. Местоположение неисправности можно определить простым перемещением курсора на фронт отраженного от обрыва импульса и считыванием расстояния с дисплея.

Случайная вибрация или другое нерегулярное событие приводит к ослаблению соединения и пропаданию электрического контакта — так возникает неисправность, похожая на частичный обрыв. Обратите внимание, что в момент проявления данного повреждения импульс, отраженный от дальнего разомкнутого конца линии, уменьшается, так как из-за плохого соединения в кабельной муфте величина электрического сигнала, достигающего конца кабеля, снижается.

Какие можно сделать выводы? Непостоянным повреждениям подвержен почти каждый тип кабельных систем. Такие повреждения создают серьезные проблемы для абонентов и технического персонала телефонных компаний. Рефлектометры в режиме поиска «плавающих» дефектов позволяют постоянно контролировать кабель в течение длительного срока, так что техническому специалисту не придется впустую тратить рабочее время в ожидании, когда повреждение проявит себя.

ПУПИНОВСКИЕ КАТУШКИ

Одной из актуальных проблем связи является увеличение дальности передачи без дополнительного расхода цветных металлов. Для решения этой задачи производители постоянно совершенствуют аппаратуру и стремятся уменьшить затухание на линиях. Наиболее простой способ минимизации затухания состоит в искусственном увеличении индуктивности линий. Этот способ получил название «пупинизация» — по имени его изобретателя М. Пупина, который для уменьшения затухания абонентской линии в диапазоне частот до 3 кГц предложил периодически включать в линию катушки с индуктивностью, примерно на два порядка превышающей индуктивность самой абонентской линии, и определил оптимальное расстояние между ними. Такие катушки обычно называют пупиновскими катушками, а расстояние между двумя соседними катушками — шагом пупинизации.

Читайте так же:
Счетчики с gps модулем

Пупиновские катушки нарушают однородность медной пары, превращая ее в идеальный фильтр нижних частот, затухание которого резко возрастает на высоких частотах.

Как видно из рисунка, где приведены частотные зависимости коэффициентов затухания пупинизированного (ап) и непупинизированного (а) кабелей, применение пупинизации позволяет уменьшить коэффициент затухания витой пары в два-три раза. Однако на частотах, близких к предельной f0 и выше, ее затухание сразу же возрастает и становится даже больше, чем у непупинизированных кабелей.

Поэтому обязательным условием применения любых технологий xDSL на существующих абонентских линиях является удаление пупиновских катушек, которые нашли особенно широкое применение в телефонных сетях США. В абонентских сетях России к пупинизации прибегали достаточно редко: например, сеть МГТС имеет около 5% пупинизированных кабелей. Тем не менее всегда есть вероятность, что при развертывании технологий хDSL придется столкнуться с данной проблемой. В таком случае понадобится рефлектометр с функцией поиска и подсчета пупиновских катушек.

ПОИСК МЕСТА УСТАНОВКИ ПУПИНОВСКИХ КАТУШЕК

Рефлектометр — единственный прибор, позволяющий просто и точно определить местонахождение пупиновских катушек. Так как импульсы, посылаемые рефлектометром, высокочастотные, они отражаются от пупиновской катушки, которая является фильтром низких частот. Катушка на рефлектограмме выглядит как значительное увеличение импеданса кабеля, т. е. подобна рефлектограмме обрыва линии.

Как можно заметить, очертание импульса, отраженного от пупиновской катушки, более округлое по сравнению с очертанием импульса, отраженного от обрыва кабеля, а сама катушка находится на расстоянии около 1700 м. В России существует несколько систем пупинизации: средняя, легкая, очень легкая и легкая радиовещательная. Все системы имеют одинаковый шаг пупинизации 1,7 км и отличаются индуктивностью катушек, полосой передаваемых частот и расстоянием между усилителями. К сожалению, на рефлектограмме видна только первая катушка.

ПОДСЧЕТ КОЛИЧЕСТВА ПУПИНОВСКИХ КАТУШЕК

Рефлектометр может использоваться и как вспомогательный прибор при проведении измерений с помощью резистивного моста. Наличие пупиновских катушек вносит неточность в показания, так как каждая из них добавляет около 4 Ом к значению сопротивления, полученного при измерении. Использование счетчика пупиновских катушек позволяет приблизительно оценить, сколько катушек установлено на линии, и определить погрешность измерений, проведенных с помощью резистивного моста.

Например, сопротивление 4 Ом соответствует приблизительно 152 м кабеля с диаметром жил 0,90 мм. Это означает, что с каждой установленной пупиновской катушкой значения измерений, полученные с помощью резистивного моста, окажутся больше почти на 152 м. При подозрении, что результаты могут содержать ошибку, воспользуйтесь счетчиком пупиновских катушек.

Электросчетчик трехфазный электронный многотарифный

Электросчетчик трехфазный электронный многотарифный имеет встроенный цифровой интерфейс, встроенный тарификатор.

Схема подключения электрического счетчика.

Обеспечивает учет активной и реактивной электроэнергии в одно- или многотарифном режимах суммарно по всем фазам или может осуществлять учёт активной энергии по каждой фазе отдельно. На жидкокристаллическом дисплее индицируются- значения активной и реактивной электрической энергии, измерение мгновенных значений активной, реактивной и полной мощности по каждой фазе и по сумме фаз, измерение по каждой фазе – тока, напряжения, частоты, cos ф, углов между фазными напряжениями.

Такой электросчетчик поддерживает передачу данных измерений по силовой сети, по интерфейсам – CAN, RS-485. Может передаваться вся доступная информация. Имеется возможность программировать счётчик в режим суммирования фаз “по модулю” для предотвращения хищения электроэнергии при нарушении фазировки подключения, имеется возможность корректировать внутренние часы электросчетчика.

Читайте так же:
Счетчики банкнот sbm 1100

Предназначен для эксплуатации в электроустановках административных, жилых и общественных зданий, производственных помещений, коттеджей, дач, магазинов, гаражных кооперативов и т.п. при снабжении потребителей электроэнергии от трехфазной электросети.

Как считает счетчик при низком напряжении

Итак, давайте предположим, что напряжение в сети нормальное и равно 230 Вольт и в сеть включен чайник мощностью 1,6 кВт. Так вот, согласно простой формуле I = P/V, ток потребления составит 1600/230 = 6.956 Ампера.

А это значит, что при понижении напряжения, например, до 200 Вольт (которое можно определить самым обычным мультиметром), ток потребления возрастет до 1600/200 = 8 Ампер, значит, потребление прибора учета возрастет.

И логично предположить, что больший протекающий ток через прибор учета должен заставить его быстрее крутить диск или же подсчитывать импульсы, но этого не происходит.

Счетчик электроэнергии смонтированный на фасаде дома

Все потому, что в старых счетчиках присутствует катушка напряжения, а в современных обязательно учитывается напряжение сети.

Вывод: при низком напряжении счетчик будет считать точно так же как и при нормальном напряжении в сети, но это еще не все.

Низкое напряжение все равно скажется на вашей квитанции, и вот по какой причине. Опять возьмем условный чайник. Так вот при нормальном напряжении он разогреет воду для нашего чая (кофе) за 5 минут.

А вот при низком напряжении ему уже понадобится на это действие 10-12 минут, и все это время счетчик будет активно накручивать.

Так же и с другими приборами в доме. Так, если компрессор холодильника при нормальном напряжении отключается после 20-30 минут работы, при низком же напряжении он будет молотить часами, тем самым потребляя все больше и больше киловатт.

Re: Расход электроэнергии при низком напряжении

Смотря какой характер нагрузки. Не вдаваясь в подробности: условно активная нагрузка (лампочки накаливания, ТЭНы) действительно будет потреблять меньше кВт, но и работать менее эффективно. Для холодильников, пылесосов и пр с большей индуктивностью картина совершенно обратная, потребление выше, ток увеличен и вообще это критический режим работы для такой нагрузки.

вадим84 Сообщения: 61 Зарегистрирован: 19 янв 2016, 17:59

Замер сопротивления и формула расчета

Замерить активное сопротивление катушки индуктивности можно только в обесточенном виде. Делается это при помощи мультиметра.

  1. Мультиметр надо перевести в режим омметра.
  2. Красный измерительный щуп соединить с первым выходом катушки.
  3. Черный измерительный щуп соединить со вторым выходом.
  4. Прибор покажет только активное сопротивление обмотки.

Замер сопротивления

При помощи тестера можно определить только целостность витков. Если элемент включен в цепь под напряжением, то величину сопротивления находят за счет простого вычисления по формуле: Z=U/I.

Для расчета по этой формуле, при помощи тестера определяют сначала величину тока (I) и напряжения (U). Активное сопротивление измеряется в Омах.

Зная формулу расчета активного и индуктивного сопротивления, полное сопротивление элемента может быть найдено с помощью формулы:

В этом выражении R является активным сопротивлением, а XL — индуктивным.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector