Audytor.ru

Теплоснабжение "Аудитор"
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Химический источник тока

История создания [ править | править код ]

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был «элемент Вольта» — сосуд с серной кислотой с опущенными в него цинковой и медной пластинками, с проволочными токовыводами. Затем учёный собрал батарею из этих элементов, которая впоследствии была названа «вольтовым столбом». Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Даниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться «элементом Даниеля».

В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор, поместив скрученную в рулон тонкую свинцовую пластину в серную кислоту. Этот тип элемента и по сей день используется в автомобильных аккумуляторах.

В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2 в качестве деполяризатора с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств.

В 1890 году в Нью-Йорке Конрад Хьюберт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia».

Самый старый, поныне работающий гальванический элемент — серебряно-цинковая батарея, изготовленная в Лондоне в 1840 году. Подключенный к двум таким последовательно соединенным батареям звонок работает и по сей день в Кларендонской лаборатории Оксфорда [1] .

Тепловые источники

В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов электрической цепи.
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.
Читайте так же:
Мощность тепловых потерь в источнике тока

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа. Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения). Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

  • alt=»Как выбрать источник бесперебойного питания» width=»120″ height=»120″ />Как выбрать источник бесперебойного питания
  • alt=»Импульсный источник питания» width=»120″ height=»120″ />Импульсный источник питания
  • alt=»Мощность электрического тока» width=»120″ height=»120″ />Мощность электрического тока
  • alt=»Трансформатор тока» width=»120″ height=»120″ />Трансформатор тока

БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ ИСТОЧНИКИ

Источники бесперебойного и резервного энергоснабжения необходимы при краткосрочных и длительных отключениях электроэнергии. При отсутствии таких устройств частный дом может остаться без света, отопления и всей электротехники на неопределенный срок.

Бесперебойные.

Эти устройства обеспечивают работоспособность подключенных электроприборов и техники при кратковременных перебоях в поставках электроэнергии. Также они выполняют функцию защиты от скачков напряжения и помех.

Бесперебойники делятся на три категории:

Имеют самую простую конструкцию, высокий КПД и низкую стоимость. При отключении электроэнергии или выходе параметров напряжения за допустимые пределы источник автоматически включает встроенный аккумулятор.

Line-interactive.

Имеют аналогичную конструкцию плюс встроенный стабилизатор. Аккумулятор включается только тогда, когда стабилизатор неспособен справиться со стабилизацией входного напряжения. Его основные недостатки, как и у предыдущего устройства – это наличие промежутка времени, требуемого на переключение режимов работы, и невозможность корректировать частоту сети.

У таких источников самое высокое качество и стоимость. Они работают по принципу двойного преобразования: входное напряжение сначала преобразуется в постоянное, а затем с помощью инвертора обратно в переменное. Здесь не требуется время на переключение на питание от внешнего аккумулятора, он подключен в цепь и при стабильном энергоснабжении находится в буферном режиме.

  • для безопасного отключения устройств при перебоях в сети;
  • в охранно пожарной сигнализации, видеонаблюдении, контроле доступа;
  • для оборудования системы умный дом.

Резервные источники питания.

Эти устройства необходимы для питания электроприборов при длительных отключениях электроэнергии или когда объект находится далеко от линии электропередач.

Автономные электростанции бывают следующих видов:

Эффективны, но потребляют много топлива. Работают бесшумно, хорошо запускаются в зимний период.

Работают практически в любых условиях, но также требуют значительных финансовых вложений. Целесообразно их использование при суммарной потребляемой мощности свыше 6 кВт.

Читайте так же:
Электроприборы в которых используется тепловое действие тока

Используют природный источник энергии – солнечный свет. Их применение выгодно в условиях климата с большим количеством солнечных дней. Станции не имеют подвижных частей и отличаются высокой надежностью.

Они должны размещаться на возвышенности и в местности с регулярным движением воздуха, желательно в одном направлении. Конструкция имеет большой вес, осложняет ситуацию наличие подвижных частей.

Использование солнечных и ветряных генераторов целесообразно при их постоянной эксплуатации как альтернативных систем электроснабжения, так как они требуют значительных затрат на приобретение и установку и окупаются не сразу.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Источники электрического тока Выполнил: Рубцов Антон ученик 8 Б класса МОУ СОШ № 105 Научный руководитель: Маслова Е. А. учитель физики

Выбор темы Я захотел изучить историю создания источников электрического тока, а также сделать некоторые источники своими руками, повторив опыты известных ученых. Актуальность Человечество не может существовать без электрической энергии и возможно кому то удастся открыть новые источники электрического тока более экономичные и менее затратные. Цель работы – изучение основных видов источников электрического тока, принципа их действия и изготовление источников своими руками. Задачи: 1. Рассмотреть основные виды источников электрического тока. 2. Изучить принцип действия источников тока. 3. Изготовить некоторые источники своими руками.

Основная часть Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию. В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника. Электрический ток — направленное (упорядоченное) движение заряженных частиц (электронов, ионов и др.) За направление тока принимают направление движения положительно заряженных частиц. Если ток создается отрицательно заряженными частицами (например, электронами), то направление тока считают противоположным направлению движения частиц.

История создания первых источников тока

Свойства янтаря Впервые на электрический заряд обратил внимание Фалес Милетский. Он обнаружил, что янтарь, потёртый о шерсть, приобретает свойства притягивать мелкие предметы. Окаменелая смола древних деревьев которые росли на нашей планете 38-120 млн лет назад.

Электрическая машина Отто фон Герике Отто фон Герике придумал первую электрическую машину. Он налил расплавленную серу внутрь полого стеклянного шара, а затем, когда сера затвердела, разбил стекло. Затем Герике укрепил серный шар так, чтобы его можно было вращать рукояткой. Для получения заряда надо было одной рукой вращать шар, а другой — прижимать к нему кусок кожи. Трение поднимало напряжение шара до величины, достаточной, чтобы получать искры длиной в несколько сантиметров.

Лейденская банка Лейденская банка представляет собой стеклянную бутылку, с обеих сторон обвернутую фольгой. Внутри банки имеется металлический стержень. Подключенная обкладками к электрической машине банка могла накапливать значительное количество электричества. Если ее обкладки соединяли отрезком толстой проволоки, то в месте замыкания проскакивала сильная искра, и накопленный электрический заряд мгновенно исчезал. Так стало возможным получить кратковременный электрический ток. Затем банку надо было снова заряжать. Сейчас подобные приборы мы называем электрическими конденсаторами.

Читайте так же:
Чем обозначается количество теплоты выделяемое током

Элемент Гальвани Луиджи Гальвани (1737-1798) — один из основоположников учения об электричестве, его опыты с «животным» электричеством положили начало новому научному направлению — электрофизиологии. В результате опытов с лягушками Гальвани предположил существование электричества внутри живых организмов. В честь него был назван гальванический элемент – батарейка.

Вольтов столб Алесандро Вольта (1745 — 1827) — итальянский физик, химик и физиолог, изобретатель источника постоянного электрического тока. Его первый источник тока – «вольтов столб». Вольта положил друг на друга попеременно несколько десятков небольших цинковых и серебряных кружочков, проложив меж ними бумагу, смоченную подсоленной водой.

Основные виды источников электрического тока Механические Тепловые Световые Химические Термоэлемент Фотоэлемент Электрофорная машина Гальванический элемент

Источники тока животного происхождения

Электричество внутри живых организмов У многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

Животные, вырабатывающие электрический ток Электрический скат (до 220 В) Американский сомик (до 360 В) Угорь (до 1200 В)

Фрукты и овощи, вырабатывающие электрический ток. Фрукты и овощи можно разделить на изначально содержащие и приобретшие внутрищелочной или кислотный баланс в процессе окисления. К первым относятся цитрусовые (лимон) и картошка. А ко вторым, например соленый огурец и маринованный помидор.

Атмосферное электричество При движении воздуха воздушные различные потоки в результате соприкосновения электризуются. Одна часть облака (верхняя) электризуется положительно, а другая (нижняя) — отрицательно. В момент, когда заряд облака станет большим, между двумя его наэлектризованными частями проскакивает мощная электрическая искра – молния.

Самодельные батарейки Для изготовления самодельных батареек нам потребуются приборы и материалы: Медная пластинка Цинковая пластинка Лимон, огурец, сода, вода, монетки Вольтметр Соединительные провода

Гальванический элемент из лимона Вырабатывает электрический ток напряжением

Гальванический элемент из первого соленого огурца Вырабатывает электрический ток напряжением

Гальванический элемент из второго и третьего огурцов

Батарея из двух соленых огурцов Вырабатывает электрический ток напряжением

Батарея из трех соленых огурцов Вырабатывает электрический ток напряжением

Лампочка, включенная в цепь из трех соленых огурцов Собрали цепь Лампочка загорелась

Содовая батарейка Вырабатывает электрический ток напряжением

Содовая батарея из двух и трех элементов

Лампочка, включенная в цепь трех содовых элементов Собрали цепь Лампочка загорелась

Соленая батарейка Вырабатывает электрический ток напряжением

Заключение Для достижения цели данной работы я решил следующие задачи: Рассмотрел основные виды источников электрического тока. 1. Механические источники тока 2. Тепловые источники тока 3. Световые источники тока 4. Химические источники тока Изучил принцип работы источников тока. Изготовил некоторые источники своими руками. 1. Гальванический элемент из лимона. 2. Гальванический элемент из соленого огурца. 3. Содовую батарейку. 4. Соленую батарейку.

Читайте так же:
Тепловой источник тока сообщение

Библиография Абрамов С.С.. Большая энциклопедия Кирилла и Мифодия . 2009 Википедия – свободная энциклопедия. www . ru . wikipedia . org . Джулиан Холанд . Большая иллюстрированная энциклопедия эрудита. «Махаон» 2001г; Карцев В.П. Приключения великих уравнений. М.: Просвещение, 2007

ИСТОЧНИКИ ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ

  • элементная база электронных устройств работает на низком напряжении питания;
  • безопасность использования бытовых приборов: чем ниже напряжение, тем меньше рисков;
  • первичные источники питания расположены на значительном удалении от потребителей: для транспортировки электроэнергии необходимо напряжение в сотни киловольт.

Соответственно, необходимы промежуточные преобразователи параметров между генерирующей системой и потребителем. Эти устройства называются вторичными источниками питания.

Для информации: Определение вторичности относительно. Например, трансформаторная подстанция между электростанцией и вашим домом, относительно генерирующей системы является вторичным источником питания. А по отношению к зарядному устройству вашего смартфона – это первичный источник.

Применимо к электроприборам, если розетку 220 вольт считать первичкой, вторичным является любой блок питания. Вне зависимости от того, встроен он в телевизор, или выполнен отдельным устройством, как в ноутбуке.

Помимо основной задачи: преобразовывать параметры напряжения и тока, источник вторичного питания может выполнять роль стабилизатора.

Как работает АЭС?

Атомная электростанция — комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.

На АЭС происходит три взаимных преобразования форм энергии

переходит в тепловую

переходит в механическую

преобразуется в электрическую

1. Ядерная энергия переходит в тепловую

Основой станции является реактор — конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.

2. Тепловая энергия переходит в механическую

Тепло отводится из активной зоны реактора теплоносителем — жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.

3. Механическая энергия преобразуется в электрическую

Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.

Из чего состоит АЭС?

Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).

Основным элементом реактора является активная зона(1) . Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.

Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.

Читайте так же:
Выключатель теплого пола накладной

На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.

Какие бывают АЭС?

В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

В настоящее время в России действует 6 АЭС с двухконтурными реакторами

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.

В настоящее время в России действует 1 АЭС с трехконтурным реактором

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

В настоящее время в России действует 6 АЭС с двухконтурными реакторами

В настоящее время в России действует 1 АЭС с трехконтурными реакторами

АЭС как мощный базовый источник энергии

Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. К примеру, по подсчетам экспертов, атомные станции в Европе ежегодно позволяют избежать эмиссии около 700 миллионов тонн СО2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу около 210 млн тонн углекислого газа. Таким образом, ядерная энергетика, являясь мощным базовым источником электрогенерации, вносит свой вклад в декарбонизацию.

Использованные ресурсы и литература:

Использованные ресурсы и литература:

Использованные ресурсы и литература:

А.В.Пёрышкин. Физика 8. Дрофа, М., 2007г.
Томилин А.Н. Рассказы об электричестве.
http://ru.wikipedia.org
http:// www.disel.ru
http:// www.fizika.ru
http:// www.edu.doal.ru
http:// schools.mari-el.ru
http:// www.iro.yar.ru

Домашнее задание:
§ 32, стр73-77, вопросы 1-8 (устно), Задание 1 (по желанию);
Домашний проект. Сделай батарейку (инструкция выдаётся каждому ученику).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector